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Abstract 
 
The geometric singularity problem is one of principal difficulty when using single-gimbal control moment gyros as 

spacecraft attitude control devices. To overcome singularity, new steering logics are suggested in this paper which 
results in a reduction in the difficulty of generating gimbal rates around a singular state. One of the suggested steering 
laws presented is the reduced dimensional singular value decomposition steering law, which adopts the singular value 
decomposition in reduced dimensional forms. Two other steering laws make use of the least square method in reduced 
dimensional forms. All of the suggested steering laws have been generated for the compensation of the torque 
insufficiency. These logics are verified mathematically and simulations at a singular condition and non-singular 
condition are performed to see how well they work. 
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1. Introduction 

Single Gimbal Control Moment Gyros (SGCMGs) 
have a significant advantage over other attitude 
control devices such as thrusters or reaction wheels in 
terms of torque amplification. Therefore, expectations 
have been that SGCMGs will become increasingly 
necessary for agile spacecraft. However, despite such 
an advantage, it is difficult to use SGCMGs as 
spacecraft attitude control devices because of the 
geometric singularity phenomenon, which is a 
specific arrangement of gimbals leading to a loss of 
controllability of 3-axes. Singular states preclude 
SGCMGs from generating torque in a certain 
direction, called the singular direction, and lead to 
loss of three-axis control of the spacecraft. Many 
studies and extensive development have been sought 

to solve this singular problem. Margulies and Auburn 
(1978) established the fundamentals of the geometric 
analysis for singular conditions. Cornick (1979) and 
Bedrossian et al (1990) suggested the use of null 
motion to avoid singularity. Nakamura and Hanafusa 

(1986) suggested the singularity robust inverse 
method. Vadali et al (1990), Oh and Vadali (1994) and 
Wie et al (2001) have extended the application of this 
method. Ford and Hall (2000) make use of singular 
value decomposition to compute a pseudoinverse that 
prevents large gimbal rate commands. However, these 
methods allow torque errors to avoid the singularity 
or command large gimbal rates around the singularity. 
For these reasons, a new method that decreases torque 
errors while generating gimbal rates without an 
abrupt change is needed. 

In this paper, three new types of steering logics are 
suggested. These logics operate gimbal rates robustly 
in order to obtain output torque by means of asym-
ptotic reduced-dimensional fashions rather than by  
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avoiding the singularity directly. By observing the 
Jacobian matrix and using the singular value 
decomposition, the Reduced Dimensional Singular 
Value Decomposition (RDSVD) steering law is 
designed by eliminating one of singular values 
causing singularity during the process of reducing the 
dimension of the Jacobian matrix. In this steering 
logic, the insufficient output torques which lead to 
torque errors are filled by compensation. However, 
the chattering phenomena of gimbal rates occur 
during the process of compensation. To prevent these 
chattering phenomena, newly defined parameters that 
play on/off roles are used to help produce gimbal 
rates without chattering.  

As a different approach, two different steering laws 
are invented by means of the least square method in 
which a form of reduced dimensional Jacobian matrix 
is used. These reduced dimensional matrices are 
composed of singularity-free forms. They are called 
Reduced Dimensional Least Square (RDLS) steering 
laws. These suggested laws also require compen-
sation on the insufficient output torques that occur 
when the Jacobian matrix in the reduced dimensional 
forms are adopted. For the compensation, a series of 
gimbal rate commands are generated in an asymptotic 
fashion in regular sequence.  

To verify the methods suggested in this paper, some 
illustrative simulations are performed on singular sate 
and non-singular state conditions.  
 

2. Spacecraft system with four SGCMGs 

A spacecraft with four single-gimbal CMGs mounted 
in the pyramid configuration is considered as shown 
in Fig. 1. The moment of inertia of the gimbals is 
assumed negligible compared to that of the spacecraft.  

The total angular momentum vector h of the 
SGCMGs cluster can be described in terms of the sum 
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Fig. 1. A Pyramid Configuration of four SGCMGs. 

of the i-th wheel axial angular momentum ih  as  
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where 

ih  is the function of gimbal angle iσ . The 
time derivative of h  is the output torque, and can be 
written as 

 
σDh =                (2) 

 
where the gimbal rate σ is denoted as 

T][ 4321 σσσσσ ≡ . The matrix D is a 3 × 4 

Jacobian matrix shown by 
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where the 3×1 column vector id  represents the 

output torque produced by the rotation of the i-th 
gimbal. 
 

3. Steering laws and singularities 

To produce the required torque rL  from Eq. (2), 
since the Jacobian matrix D is 3×4, a control solution 
for gimbal rates can be selected using a pseudo 
inverse +D shown as  

 
r

TT
r LDDDLD 1)( −+ ==σ             (4) 

 
However, when all of the output torque vectors 

id are located at a coplanar level, the rank of D  then 

becomes less than three. This is called the singularity. 
Methods to overcome this singularity have been 
developed, but they allow for torque errors and an 
abrupt change of gimbal rates in the vicinity of 
singular states. Thus, a new steering strategy that 
reduces the torque errors and difficulties in generating 
gimbal rates around singularity is needed. To this end, 
an attempt is made to generate a series of gimbal rate 
commands in an asymptotic fashion by adopting the 
reduced dimensional form of matrix D . Three types 
of reduced dimensional steering laws are suggested: 
Reduced Dimensional Singular Value Decomposition 
(RDSVD), and Reduced Dimensional Least Square 
(RDLS)-1 and -2. 
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3.1 Reduced dimensional singular value decompo-
sition steering law (RDSVD) 

The matrix D can be decomposed by singular 
value decomposition into the product of three special 
matrices represented as 

 
TUSVD =                (5) 

 
where U  is a 3×3 unitary matrix, S  is a 3×4 

singular value matrix, and V  is a 4×4 unitary matrix. 
The last column of S  is always all zero. Thus, 
S can be replaced by the truncated matrix tS  with 
singular values 1s , 2s , 3s , which are obtained by 
discarding the last column of S . The matrix D can 
thus be represented by the truncated matrices as 

 
T

ttVUSD =                (6) 

 
The matrix tV  is the matrix in which the last 

column is truncated from V . The pseudo inverse of 
D  can then be represented as  

 
T
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where }1,1,1{
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1

sss
diagSt =−   (8) 

 
When the matrix D  becomes singular, the 

singular value 3S approaches zero, and 1−
tS  moves 

toward infinity. To avoid this harsh condition of 
singularity, modified reduced dimensional matrices 
are considered. These modified matrices are made by 
eliminating the singular value 3s  from singular value 

matrix and, to rearrange the rest of singular values 
1s and 2s , U  and V  matrices are divided into the 

corresponding dimensional forms.  
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where tiU is a 3×2 matrix, tiV  is a 4×2 matrix, and 

ttS is a 2×2 singular value matrix . Then, a modified 

inversion of the matrix D  is considered as 
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The elements of 1−

tS  in Eq. (7) are rearranged 
with respect to the non-zero singular values of 1s and 

2s . The gimbal rate command is then chosen as  
 

rtr
T

tts LDLUSV **
1 )( ≡=σ            (12) 

 
The gimbal rate command obtained above is, 

however, not sufficient to produce the required torque 
exactly. For this reason, gimbal rate compensation is 
needed and an iterative asymptotic approach is 
attempted as follows. Let 1oL be the output torque 
generated by the gimbal rate command 1sσ  as 
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The output torque obtained with gimbal rate 1sσ  is 

normally different from the required torque because 
Jaconian matrix D  is changed into the reduced 
dimensional matrices. In this case, to compensate on 
output torque, another gimbal rate is needed and can 
be obtained with the use of torque difference 1r oL L−  
as with Eq. (14). This is similar process obtaining 
gimbal rate 1sσ  except for the use of torque differ-
ence instead of required torque. 
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Then, the output torque generated by the gimbal 

rate command 2sσ  is obtained in the same way. 
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Similarly, the corresponding output torque for the 
next generation of gimbal rate commands, repre-
sented by 3sσ , 4sσ  are obtained respectively as 
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Then, the gimbal rate command is obtained by 

combing all the gimbal rates as 
 

4321 ssss σσσσσ +++=            (20) 

 
Therefore, the output torque generated by the 

combined gimbal rate command is 
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where 
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33 so DL σ≡ , and 
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In Eq. (21), each sum of the compensated output 
torque is  
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From Eq. (22) above, )3(),2( oo LL are geometric 
progressions with the ratios 121 2/)( sss −  and 

232 /)( sss −  respectively, and the sums of those 

geometric progressions are 
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Here, the singular values 1s , 2s , 3s  have the 

relationship 0321 ≥≥≥ sss . Further, values for 

required torques and output torques tend to merge as 
the number of compensations increases, as illustrated 
by Eqs. (25) and (26) 
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Equations (25) and (26) show that output torque 

converges on the required torque by the gimbal rate 
compensation method, if compensation is conducted 
continuously. Actually, singular value decomposition 
is computed just one time in every time step during 
simulations. However, there is no time consuming to 
affect real-time capability. Once singular value de-
composition is computed, we get three matrices and 
there are left just simple calculation. In this approach, 
gimbal rate compensation is conducted only four 
times, that is n=4, and which is implemented com-
pulsorily. Thus, torque differences still exist. But, 
such torque differences are very small respect to the 
required torque since compensation is already con-
ducted four times. For example, which is shown in 
simulations in the later part of this paper, SR steering 
law also allows small amount of torque differences. 
Conducting compensation more than four times is 
also possible and achieves greater accuracy. However, 
it was found that the differences between required 
torque and output torques become very small after 
four rounds of compensation.  

From the above Eq. (22), it is evident that the 
singular value 3s  becomes zero in singularity, which 
then causes the output torque )3(oL  to be zero. That 

is, under the singular conditions, the output torque is  
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Fig. 2. Torque producing in a singular state. 
 
produced in the plane made by )1(oL  and )2(oL , 

like the least square method in Fig. 2, if compensation 
is fully implemented. However, in the non-singular 
case, the output torque meets the required torque 
because of the methods of compensation. 

In a singular condition, there exists a singular 
direction for which SGCMGs do not generate output 
torque. But, this suggested steering law compulsorily 
tries to produce output torque in that direction and 
such a condition makes output torque vectors of 
SGCMGs oscillate around a singular direction and a 
chattering phenomenon occurs. To prevent the 
chattering phenomenon, a switching parameter is 
newly defined. This parameter plays an on/off role 
much like a switch. That is, if a certain obtainable 
value goes below the assigned value, this parameter 
produces zero, if not, it produces one. This switching 
parameter is just made by a simple arithmetic. 
Considering a fraction, it will be zero if a numerator 
is zero and it will be one if a numerator is same with a 
denominator. So, switching parameter is based on 
such a thought and be represented in Eq. (27).  

 
[ ] 11

211 )1( −−++= γλλλαb           (27) 

 
where b = assigned value 
γ =⎪b – obtained value⎪ – (b – obtained value) 

21, λλ = constant 
 
With this switching parameter, the gimbal rate is 

redesigned as 
 

1 0.1 2 0.3 3 0.5 4( (1 ) ) s s s sKδ ε εσ α α σ α σ α σ α σ= − + + + +  (28) 
 
where 

3

1

1.5i i
i

Iε ω
=

= −∑  

=δK Constant 

Then, Eq. (28) represents the actual gimbal rate  

 
(a) 

 
(b) 

Fig. 3. A chattering phenomenon. 
 

command according to the value of a singularity 
measure. As a singularity measure, a determinant 
of TDD is used. The constant values 21 , λλ  are set to 
105 and 10-3 respectively, and δK  is set to 10-2.  

Illustrative figures are shown below with a chat-
tering phenomenon compared with the case of using 
and no-using switching parameter. 

Above figure is a part of simulation 1 in this paper. 
Fig. (a) shows gimbal rate chattering phenomenon 
and Fig. (b) is the case of using switching parameter 
to eliminating a chattering of gimbal rate. 

 
3.2. Reduced dimensional least square steering  

law-1 (RDLS-1) 

Another singularity-free steering strategy is to 
select a pair of non-collinear output torque vectors 
among },,,{ 4321 dddd , and then generate the 

required torque by the method of least-squares. For 
example, the Jacobian matrix D  is divided into four 
3×2 matrices, as in Eq. (29). 

 
][],[],[],[ 144433322211 ddDddDddDddD ≡≡≡≡  (29) 

 
Each of the four matrices in Eq. (29) is recomposed 
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into singular value matrixes as in Eq. (30). 
 

4,3,2,1, == iUSVD T
i            (30) 

 
where U is a 3×3 unitary matrix, S is a 3×2 

singular value matrix, and V is a 2×2 unitary matrix. 
The last row of S is always a row of zeroes. Thus, 
S can be replaced by the truncated matrix tS  with 
singular values 1s , 2s , which are obtained by discar-
ding the last row of S , and the matrix tU , which is 
also truncated from the last column of U . The matrix 

iD can then be represented by the truncated matrices 

as 
T

tti VUSD =               (31) 

 
Using the truncated matrices in Eq. (31), the gimbal 

rates for the first and second CMGs are then obtained 
from the least square method in the reduced 
dimensional form 
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where 12σ  is the reduced dimensional gimbal rate 

command vector represented by T][ 2112 σσσ ≡ . 
The output torque generated by the gimbal rate 
command 12σ  is then 
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In Eq. (33) above, T

ttUU  is a orthogonal 

projection matrix (Darald J. Hatfield, 2000) which 
projects the required torque to the plane made by the 
first and the second CMGs output torque, as 
illustrated in Fig. 4. Then, since 1oL  is normally 
different from the required torque rL , in order to 
reduce the difference, another gimbal rate command 

23σ  is generated as  
 

)()( 12
1

2223 or
TT LLDDD −= −σ            (34) 

 
However, since it is still possible for a difference to 

exist between the output and the required torque, the 
gimbal rate commands 34σ  and 41σ  are obtained in 

a similar fashion consecutively. To combine the 
gimbal rates, the gimbal rate configuration matrices 
are used. These matrices play a role of assigning each 
gimbal rate to their corresponding positions. Finally, 
combining the gimbal rates result in 
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where the gimbal rate configuration matrices 12P , 

23P , 34P  and 41P  are 
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In a non-singular state, the output torque generated 

by the combined gimbal rate will approach the 
required torque in Eq. (37), and finally converge after 
a few rounds of compensation. 

 
,4,3,2,1,sin1,,, =⋅=− + iLLL iioioir θ   (37) 

 
Since each of four matrices in Eq. (29) has a 

different torque plane, a magnitude of the differences 
between the required torque and output torque 

ri oiL L−  gradually decrease to zero in a non-

singular condition because the angle of 
iθ  is 

always
2

0 πθ <≤ i
. This is well described in Fig. 4. 

However, around the singularity, the output torque 
is produced only by the orthogonal projection matrix 
to the torque plane on which each SGCMG generates 
its capable torque. Although difference between the 
output torque oL  and the required torque rL still 

exist, singular configurations can be removed by such 
a torque. That is, a singular SGCMG system can be 
reconfigured by using RDLS-1, and this difference is 
minimized by means of the least square method. 
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1rL

2rL

1oL
2oL

3rL

 
Fig. 4. Torque producing by RDLS-1. 



442                 Bong-Un Lee et al. / Journal of Mechanical Science and Technology 21(2007) 436~447 
 

3.3 Reduced Dimensional Least Square steering  
law-2 (RDLS-2) 

Another least square steering strategy is to generate 
the required torque by operating the SGCMG 
independently, in other words by operating the output 
torque vectors },,,{ 4321 dddd . This process is 

similar to the RDLS-1 except that the dimension is 
different from that of RDLS-1. At first, a least square 
method is performed on the first SGCMG resulting in 

 

r
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r
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d
dLddd 2

1

1
1

1
111 )( == −σ   (38) 

 
The output torque of the first SGCMG is then, 
 

11 oLD =σ                (39) 

 
Next, the asymptotic approach is applied, as shown 

previous section, in Eq. (40). 
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The rest of the gimbal rates are individually 

obtained from the difference torque, and finally we 
obtain the combined gimbal rate command as 

 
T][ 4321 σσσσσ =              (41) 

 
This steering law started from the same idea as that 

of RDLS-1. The output torque produced by each 
gimbal rate is an orthogonal projection torque of a 
required torque and goes through the same process as 
that in RDLS-1. In this steering law, the projection 
matrix in Eq. (33) plays to project the required torque 
to the line made by each gimbal rate. As with RDLS-
1, there still exists some difference between the 
output torques and required torques around the 
singularities 
 
4. Simulation Results 

In order to verify the performance of the proposed 
steering laws, some illustrative example maneuvers 
are simulated. The physical model chosen is a rigid 
spacecraft with a cluster of four CMGs arranged in a 
pyramid configuration (Oh and Vadali, 1991). The 
simulation is conducted with a moment of inertia at 

≡I diag{86.215, 85.070, 113.565}Kg·m2 and SGC-
MG with an angular momentum capacity of 1.8 
N·m·sec with a pyramid skew angle of 54.74 deg. A 
feedback control law for stabilizing to the target 
attitude (

fβ ,
fω ) is obtained by the Lyapunov 

approach as (Oh and Vadali, 1994) 
 

rLD =σ                 (42) 
 
where rL  is the required torque defined as 
 

σωωωββωω DIkGKL f
T

fr
×× −−−−= )()(  (43) 

 
where 3 2 3 1 2 1[0 ; 0 ; 0]ω ω ω ω ω ω ω× = − − −  

The gain is selected as K=diag{13.13, 13.04, 
15.08}N·m·sec and k=diag{1.0, 1.0, 1.0}N·m. In 
simulation 1, a single axis maneuver is deliberately 
initiated from an elliptic singularity, as shown in 
Table 1, where the required torque is parallel to the 
singular direction. In simulation 2, a rest-to-rest 
maneuver is accomplished with the parameters, as 
shown in Table 2. The performance of the proposed 
steering laws is compared with that of the singularity 
robust (SR) steering law (Oh and Vadali, 1991). 

In the RDSVD steering law simulation, to prevent 
the gimbal rate from changing abruptly and to escape 
from the singular state in the very beginning, the 
constant values 21 , λλ  are set to 105 and 10-3, 
respectively, and δK  is 10-2 in Eqs. (27) and (28). In 
the simulation 1, the perturbed gain matrix is used 

 
Table 1. Simulation 1 parameters. 

 Item Value Units 
ω [0.01 0 0] T rad/sec 
β [0.707 0.707 0 0]T −−− 

Initial 
State 

σ [-90, 0, 90, 0]T deg 
fω [0, 0, 0]T rad/sec Target 

State 
fβ [1, 0, 0, 0]T −−− 

 
Table 2. Simulation 2 parameters. 

 Item Value Units 

ω  [0 0 0] T rad/sec 

β  [0.707 0.707 0 0]T −−− Initial State
 

σ  [0, 0, 0, 0]T deg 

fω  [0, 0, 0]T rad/sec 
Target State

fβ [1, 0, 0, 0]T −−− 
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(a) SR 

 
(b) RDSVD 

 
(c) RDLS-1 

 
(d) RDLS-2 

Fig. 5. Simulation 1 Results. 
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together with feedback control laws. The perturbed 
gain matrix in order to prevent the required torque 
from being parallel to the singular direction is given 
by 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

312

123

231

KKK
KKK
KKK

K
δδ

δδ
δδ

            (44) 

 
where the perturbed gain is assigned the value 

Kδ =0.1 N·m·sec 
The dynamic and kinematic equations for the 

spacecraft with a SGCMG cluster can be written 
using the angular velocity ω  and the Euler 
parameter β as 

 

)(1 σωσωωω DDII ××− ++−=            (45) 

ωββ )(
2
1 G=               (46) 

 
The following Figs. 5 and 6 reveal the results of 

simulation 1. 
In an initial singular state, both SR and RDSVD 

steering laws show similar results. RDLS-1 and -2 
steering laws are smoother on maneuvering compared 
to SR and RDSVD. All of the suggested steering laws 
work well in a somewhat artificial singular condition 
which is experienced during initial stages of 
maneuvering. In this simulation, the gain is perturbed 
for all suggested steering laws and compared with 
each other. However, RDSVD steering law can 
escape singularity by itself. In other words, the 
RDSVD steering law is not affected by an initial 
singular condition and the same results can actually 
be obtained by using perturbed gain matrix or not. 

(a) SR                                        (b) RDSVD 

(c) RDLS-1                                      (d) RDLS-2 

Fig. 6. Torque Comparisons. 
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(a) SR 

 
(b) RDSVD 

 
(c) RDLS-1 

 
(d) RDLS-2 

Fig. 7. Simulation 2 Results. 
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(a) SR 

 
(b) RDSVD 

 
(c) RDLS-1 

 
(d) RDLS-2 

Fig. 8. Torque Comparisons. 
 
The results of Simulation 2 are shown in Figs. 7 

and 8. These results illustrate that RDLS steering laws  

 
(a) Simulation1 

 
(b) simulation 2 

Fig. 9. Singularity Comparisons. 
 

don’t meet singularity and act more softly than the SR 
and RDSVD steering laws, as in simulation 1. The 
perturbed gain matrix is not used to all suggested 
steering laws. In Fig. 9, the det (DDT) is shown as a 
measure of singularity. These results show that all 
suggested steering laws escaped from a singular state. 

From the results of the simulations above, it is 
possible to state that the steering laws suggested in 
this paper work well compared with SR steering laws, 
which are well known CMG steering laws. The 
results of the RDSVD simulations show that the 
gimbal rates abruptly increases to escape from 
singularity, like SR steering laws. Although the output 
torque deviates significantly from the required torque, 
especially near singularity, the proposed steering law 
works well as the singularity-free steering law in that 
the gain is not perturbed. The gain in the cases of 
RDLS-1 and -2 is perturbed in the initial singular 
state condition, but these cases show smoother 
behavior in singularity compared with other steering 
laws like SR and RDSVD. 
 

5. Conclusions 

To overcome singularity problem, a new approach 
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is presented for the design of SGCMG steering laws. 
The reduced dimensional singular value decompo-
sition steering law in the present study is designed by 
using singular value decomposition. By the process of 
adopting the singular value decomposition, this new 
steering law eliminates one of singular values which 
goes to zero in a singular state. Also, by using the 
least square method and adopting a Jacobian matrix 
of reduced-dimensional forms, the reduced dimen-
sional least square steering laws are designed. These 
steering laws have reduced dimensional forms that do 
not have a singular state. Thus, singularity-free st-
eering laws are obtained. The difference between the 
methods given in this paper and those suggested 
previously has to do with the use of a component that 
may or may not cause singularity. Further, all of the 
suggested steering laws have been compensated four 
times, differences between the output torque and the 
required torque can be reduced in an iterative asym-
ptotic fashion. Additionally, in RDSVD, using the 
newly defined switching parameter, the chattering 
phenomenon of gimbal rates disappears. Results of 
the simulations in this study show that the proposed 
reduced-dimensional steering laws work well, even in 
singularities. When the required torque is parallel to 
the singular directions at the beginning of the RDLS-
1 and -2 steering laws simulations, it is possible to 
escape from the singularity by using the perturbed 
gain matrix. However, the RDLS-1 and -2 produce 
output torques more smoothly in singular states.  
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