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Abstract

The geometric singularity problem is one of principal difficulty when using single-gimbal control moment gyros as
spacecraft attitude control devices. To overcome singularity, new steering logics are suggested in this paper which
results in a reduction in the difficulty of generating gimbal rates around a singular state. One of the suggested steering
laws presented is the reduced dimensional singular value decomposition steering law, which adopts the singular value
decomposition in reduced dimensional forms. Two other steering laws make use of the least square method in reduced
dimensional forms. All of the suggested steering laws have been generated for the compensation of the torque
insufficiency. These logics are verified mathematically and simulations at a singular condition and non-singular

condition are performed to see how well they work.
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1. Introduction

Single Gimbal Control Moment Gyros (SGCMGs)
have a significant advantage over other attitude
control devices such as thrusters or reaction wheels in
terms of torque amplification. Therefore, expectations
have been that SGCMGs will become increasingly
necessary for agile spacecraft. However, despite such
an advantage, it is difficult to use SGCMGs as
spacecraft attitude control devices because of the
geometric singularity phenomenon, which is a
specific arrangement of gimbals leading to a loss of
controllability of 3-axes. Singular states preclude
SGCMGs from generating torque in a certain
direction, called the singular direction, and lead to
loss of three-axis control of the spacecraft. Many
studies and extensive development have been sought
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to solve this singular problem. Margulies and Auburn
(1978) established the fundamentals of the geometric
analysis for singular conditions. Cornick (1979) and
Bedrossian et al (1990) suggested the use of null
motion to avoid singularity. Nakamura and Hanafusa
(1986) suggested the singularity robust inverse
method. Vadali et al (1990), Oh and Vadali (1994) and
Wie et al (2001) have extended the application of this
method. Ford and Hall (2000) make use of singular
value decomposition to compute a pseudoinverse that
prevents large gimbal rate commands. However, these
methods allow torque errors to avoid the singularity
or command large gimbal rates around the singularity.
For these reasons, a new method that decreases torque
errors while generating gimbal rates without an
abrupt change is needed.

In this paper, three new types of steering logics are
suggested. These logics operate gimbal rates robustly
in order to obtain output torque by means of asym-
ptotic reduced-dimensional fashions rather than by
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avoiding the singularity directly. By observing the
Jacobian matrix and using the singular value
decomposition, the Reduced Dimensional Singular
Value Decomposition (RDSVD) steering law is
designed by eliminating one of singular values
causing singularity during the process of reducing the
dimension of the Jacobian matrix. In this steering
logic, the insufficient output torques which lead to
torque errors are filled by compensation. However,
the chattering phenomena of gimbal rates occur
during the process of compensation. To prevent these
chattering phenomena, newly defined parameters that
play on/off roles are used to help produce gimbal
rates without chattering.

As a different approach, two different steering laws
are invented by means of the least square method in
which a form of reduced dimensional Jacobian matrix
is used. These reduced dimensional matrices are
composed of singularity-free forms. They are called
Reduced Dimensional Least Square (RDLS) steering
laws. These suggested laws also require compen-
sation on the insufficient output torques that occur
when the Jacobian matrix in the reduced dimensional
forms are adopted. For the compensation, a series of
gimbal rate commands are generated in an asymptotic
fashion in regular sequence.

To verify the methods suggested in this paper, some
illustrative simulations are performed on singular sate
and non-singular state conditions.

2. Spacecraft system with four SGCMGs

A spacecraft with four single-gimbal CMGs mounted
in the pyramid configuration is considered as shown
in Fig. 1. The moment of inertia of the gimbals is

assumed negligible compared to that of the spacecraft.

The total angular momentum vector / of the
SGCMGs cluster can be described in terms of the sum

Fig. 1. A Pyramid Configuration of four SGCMGs.

of the i-th wheel axial angular momentum j, as
4
h=> h(o)) M

where }, is the function of gimbal angle,. The

time derivative of 4 is the output torque, and can be
written as

h=D6 2)

where the rate & is denoted as

The matrix Dis a 3 X 4

gimbal
o=[0,0,0; 6-4]T :

Jacobian matrix shown by

Dz[d1d2d3d4]:[ﬂﬂ%ﬂ 3)
do, do, do, do,

where the 3x1 column vector d, represents the

output torque produced by the rotation of the i-th
gimbal.

3. Steering laws and singularities

To produce the required torque [ from Eq. (2),

since the Jacobian matrix D is 3x4, a control solution
for gimbal rates can be selected using a pseudo
inverse D™ shown as

6=D'L =D"(DD")'L, “)

However, when all of the output torque vectors
d, are located at a coplanar level, the rank of D then

becomes less than three. This is called the singularity.
Methods to overcome this singularity have been
developed, but they allow for torque errors and an
abrupt change of gimbal rates in the vicinity of
singular states. Thus, a new steering strategy that
reduces the torque errors and difficulties in generating
gimbal rates around singularity is needed. To this end,
an attempt is made to generate a series of gimbal rate
commands in an asymptotic fashion by adopting the
reduced dimensional form of matrix D. Three types
of reduced dimensional steering laws are suggested:
Reduced Dimensional Singular Value Decomposition
(RDSVD), and Reduced Dimensional Least Square
(RDLS)-1 and -2.
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3.1 Reduced dimensional singular value decompo-
sition steering law (RDSVD)

The matrix D can be decomposed by singular
value decomposition into the product of three special
matrices represented as

D=USVT )

where U is a 3x3 unitary matrix, S is a 3x4
singular value matrix, and V' is a 4x4 unitary matrix.
The last column of S is always all zero. Thus,
S can be replaced by the truncated matrix §, with

singular values s, s,, s,, Which are obtained by

discarding the last column of §. The matrix D can
thus be represented by the truncated matrices as

D=USV] O

The matrix v, is the matrix in which the last

column is truncated from J . The pseudo inverse of
D can then be represented as

D*=D"(DD")"'=V,S'U" @
where ;1 = gigg( -, -, 1 ®)
S8, S

When the matrix D becomes singular, the
singular value S, approaches zero, and s71 moves

toward infinity. To avoid this harsh condition of
singularity, modified reduced dimensional matrices
are considered. These modified matrices are made by
eliminating the singular value s, from singular value

matrix and, to rearrange the rest of singular values
s, andsz, U and V matrices are divided into the

corresponding dimensional forms.

Utl E[u2 u3]’
Vi=lv, v,

S_SIO
tt_osz

where U, is a 3x2 matrix, V/ is a 4x2 matrix, and

U, =luyus], Uy =luu,]
Vo=yvsl, Vi =[] ()

S, is a 2x2 singular value matrix . Then, a modified

inversion of the matrix D 1is considered as

3
D= %Z(Vﬁs,:'u,b =Vsu’ (10)
i=1
; 1 1
) =diagi~, T (+-+-), —} (an
s, 28 08, 8,

The elements of §~' in Eq. (7) are rearranged
with respect to the non-zero singular values of s, and
s, - The gimbal rate command is then chosen as

6,=(V,S;U)L, =D]L, (12)

The gimbal rate command obtained above is,
however, not sufficient to produce the required torque
exactly. For this reason, gimbal rate compensation is
needed and an iterative asymptotic approach is
attempted as follows. Let [ be the output torque

generated by the gimbal rate command g as

D6, =DD|L,
13
1 0 0 (13)
o sits oo lop
2s,
o o =
L SZ

The output torque obtained with gimbal rate ¢, is

normally different from the required torque because
Jaconian matrix D is changed into the reduced
dimensional matrices. In this case, to compensate on
output torque, another gimbal rate is needed and can
be obtained with the use of torque difference [ — L

as with Eq. (14). This is similar process obtaining

gimbal rate ¢, except for the use of torque differ-

ence instead of required torque.
6,=D/(L,—L,) (14)

Then, the output torque generated by the gimbal
rate command g, is obtained in the same way.

D6, =DD/(L,~L,)

0 0 0
15
B R B A ) =L, (13
Qsl 2‘S‘l
0 0 2a-2)
L 5 5 J
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Similarly, the corresponding output torque for the
next generation of gimbal rate commands, repre-
sentedby g, ¢, are obtained respectively as

O :DI*(LY_LOI -L,,) (16)
D6 =DD/ (L, —L, —L,)

0 0 0
=10 @(l_m)z 0 L =L,
2s, 2s,
0 0 S-Sy
S, S,
(17)
6,=D(L -L,-L,-L,) (18)
Do, = DD;(Lr -L,-L,-L,;)
0 0 0
=0 SI+7S21_SI+7S2)3 0 L =L,
2s, 2s,
0 0 5=y
S S
(19)

Then, the gimbal rate command is obtained by
combing all the gimbal rates as

6=06,+6,+06,+0,, (20)

Therefore, the output torque generated by the
combined gimbal rate command is

Do=L,=L,+L,+L,+L, 21

Where LoZ = DO-SZ ’ L03 = Dd—s3 ’ and L04 = DOLM

In Eq. (21), each sum of the compensated output
torque is

L,)=L,1)

s+, s +8, 85 —8 S, +s, §—8

L ()= 5iF 52  Sit Sy SimShy SiHS, 1780
-2 [ 2s, 25, ( 2s, ) 2s, ( 2s, )

S+, $ =83

—= (=) |L.(2

2, ( N )] .(2)
L (3)=(S3+S3(82_S3)+s3(s2's3)2
’ S S 05 S 05 (22)

+ S:,,(SZ_S_«,)3JL" (3)
s K

2 2

From Eq. (22) above, L,(2),L,(3)are geometric
(s, —s,)/2s, and
(s, —55)/ s, respectively, and the sums of those

progressions with the ratios
geometric progressions are

2 0)1L2) (23)

L) =0-(—=

L,(3)=(1-(EZ=2))L,3) (24)
S

2

Here, the singular values S0 8, 8, have the
relationship 5 25,25,20 . Further, values for

required torques and output torques tend to merge as
the number of compensations increases, as illustrated
by Egs. (25) and (26)

PO
lim(——=2
2s, noe 28

((PERLEIPS N y =0 (25

0<2"% o lim(u)”:o (26)

S, noel s,

Equations (25) and (26) show that output torque
converges on the required torque by the gimbal rate
compensation method, if compensation is conducted
continuously. Actually, singular value decomposition
is computed just one time in every time step during
simulations. However, there is no time consuming to
affect real-time capability. Once singular value de-
composition is computed, we get three matrices and
there are left just simple calculation. In this approach,
gimbal rate compensation is conducted only four
times, that is n=4, and which is implemented com-
pulsorily. Thus, torque differences still exist. But,
such torque differences are very small respect to the
required torque since compensation is already con-
ducted four times. For example, which is shown in
simulations in the later part of this paper, SR steering
law also allows small amount of torque differences.
Conducting compensation more than four times is
also possible and achieves greater accuracy. However,
it was found that the differences between required
torque and output torques become very small after
four rounds of compensation.

From the above Eq. (22), it is evident that the
singular value s, becomes zero in singularity, which
then causes the output torque L (3) to be zero. That

is, under the singular conditions, the output torque is
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Fig. 2. Torque producing in a singular state.

produced in the plane made by L (1) and L (2),

like the least square method in Fig. 2, if compensation
is fully implemented. However, in the non-singular
case, the output torque meets the required torque
because of the methods of compensation.

In a singular condition, there exists a singular
direction for which SGCMGs do not generate output
torque. But, this suggested steering law compulsorily
tries to produce output torque in that direction and
such a condition makes output torque vectors of
SGCMGs oscillate around a singular direction and a
chattering phenomenon occurs. To prevent the
chattering phenomenon, a switching parameter is
newly defined. This parameter plays an on/off role
much like a switch. That is, if a certain obtainable
value goes below the assigned value, this parameter
produces zero, if not, it produces one. This switching
parameter is just made by a simple arithmetic.
Considering a fraction, it will be zero if a numerator
is zero and it will be one if a numerator is same with a
denominator. So, switching parameter is based on
such a thought and be represented in Eq. (27).

&, = Al +)+ 477" @7)

where b = assigned value
y= | b — obtained value| — (5 — obtained value)

2,1 , /12 = constant

With this switching parameter, the gimbal rate is
redesigned as

o= (K5(1 —0[8)+ ag)d-sl +0’0.10.52 +0[0_30"s3 +a0.56-3'4 (28)

3
where é-:zliwi 15

i=1

K; = Constant
Then, Eq. (28) represents the actual gimbal rate
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Fig. 3. A chattering phenomenon.

command according to the value of a singularity
measure. As a singularity measure, a determinant
of DD" is used. The constant values 1,, 4, are set to

10° and 107 respectively, and K 5 issetto 107

Ilustrative figures are shown below with a chat-
tering phenomenon compared with the case of using
and no-using switching parameter.

Above figure is a part of simulation 1 in this paper.
Fig. (a) shows gimbal rate chattering phenomenon
and Fig. (b) is the case of using switching parameter
to eliminating a chattering of gimbal rate.

3.2. Reduced dimensional least square steering
law-1 (RDLS-1)

Another singularity-free steering strategy is to
select a pair of non-collinear output torque vectors
among {d,,d,,d,,d,} and then generate the

required torque by the method of least-squares. For
example, the Jacobian matrix D is divided into four
3x2 matrices, as in Eq. (29).

D, =[d, d,], D, =[d, d], D, =[d, d,], D, =[d, d,] (29)

Each of the four matrices in Eq. (29) is recomposed
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into singular value matrixes as in Eq. (30).
D, =USV" ,i=1,2,3,4 (30)

where U is a 3x3 unitary matrix, Sis a 3x2
singular value matrix, and J is a 2x2 unitary matrix.
The last row of Sis always a row of zeroes. Thus,
S can be replaced by the truncated matrix §, with

singular valuess,, s,, which are obtained by discar-
ding the last row of S, and the matrix U/ . which is

also truncated from the last column of U . The matrix
D, can then be represented by the truncated matrices

as
D, =USV’ 31

Using the truncated matrices in Eq. (31), the gimbal
rates for the first and second CMGs are then obtained
from the least square method in the reduced
dimensional form

6,=(D{D)"'D/L, 32)

where g, is the reduced dimensional gimbal rate
command vector represented by &, =[d, d,]" -

The output torque generated by the gimbal rate
command g, is then

L,=Do,
= DI(DITDl)ilDITLrl
=USy wsiulu sy 'vsiulL,
=UUL,

(33)

In Eq. (33) above, UU]
projection matrix (Darald J. Hatfield, 2000) which
projects the required torque to the plane made by the

first and the second CMGs output torque, as
illustrated in Fig. 4. Then, since L is normally

is a orthogonal

different from the required torque [ , in order to

reduce the difference, another gimbal rate command
G,, 1s generated as

6,,=(DID,)"'DI(L.-L,) (34)

However, since it is still possible for a difference to
exist between the output and the required torque, the
gimbal rate commands &, andg,, are obtained in

a similar fashion consecutively. To combine the
gimbal rates, the gimbal rate configuration matrices
are used. These matrices play a role of assigning each
gimbal rate to their corresponding positions. Finally,
combining the gimbal rates result in

d- = 13120.-12 +P236-23 +R§4O.-34 +P410.-41 (35)

where the gimbal rate configuration matrices P,
P

232
10007 01007
R, = By = ’
0100 0010 (36)
00107 00017
P, , Py =
0001 1000
In a non-singular state, the output torque generated
by the combined gimbal rate will approach the

required torque in Eq. (37), and finally converge after
a few rounds of compensation.

P, and P, are

L,-L,|=|L ,i=1,2,3,4,- (7

0,i+] -sin 0:'
Since each of four matrices in Eq. (29) has a
different torque plane, a magnitude of the differences

between the required torque and output torque
L”,_Lw_H gradually decrease to zero in a non-

singular condition because the angle of g is

always . g . 7 . This is well described in Fig. 4.
)

However, around the singularity, the output torque
is produced only by the orthogonal projection matrix
to the torque plane on which each SGCMG generates
its capable torque. Although difference between the

output torque L, and the required torque L, still
exist, singular configurations can be removed by such
a torque. That is, a singular SGCMG system can be
reconfigured by using RDLS-1, and this difference is
minimized by means of the least square method.

Fig. 4. Torque producing by RDLS-1.
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3.3 Reduced Dimensional Least Square steering
law-2 (RDLS-2)

Another least square steering strategy is to generate
the required torque by operating the SGCMG
independently, in other words by operating the output
torque vectors {d,,d,,d,,d,} - This process is

similar to the RDLS-1 except that the dimension is

different from that of RDLS-1. At first, a least square
method is performed on the first SGCMG resulting in

', (38)

0, = (d1Td1)_] dITL =
e[

»

The output torque of the first SGCMG is then,

D6, =1L, (39

Next, the asymptotic approach is applied, as shown
previous section, in Eq. (40).

2

dT
2 2 ( r Lol) (40)
2]

The rest of the gimbal rates are individually
obtained from the difference torque, and finally we
obtain the combined gimbal rate command as

6=[6,6,0,6,]" (41)

This steering law started from the same idea as that
of RDLS-1. The output torque produced by each
gimbal rate is an orthogonal projection torque of a
required torque and goes through the same process as
that in RDLS-1. In this steering law, the projection
matrix in Eq. (33) plays to project the required torque
to the line made by each gimbal rate. As with RDLS-
1, there still exists some difference between the
output torques and required torques around the
singularities

4. Simulation Results

In order to verify the performance of the proposed
steering laws, some illustrative example maneuvers
are simulated. The physical model chosen is a rigid
spacecraft with a cluster of four CMGs arranged in a
pyramid configuration (Oh and Vadali, 1991). The
simulation is conducted with a moment of inertia at

I =diag{86.215, 85.070, 113.565}Kg'm’ and SGC-
MG with an angular momentum capacity of 1.8
N-m-sec with a pyramid skew angle of 54.74 deg. A
feedback control law for stabilizing to the target
attitude ( B, o /_) is obtained by the Lyapunov

approach as (Oh and Vadali, 1994)

D=L (42)

r

where [ is the required torque defined as
L =K(w-0,)-kG"(B)B, - lo-w'Dé (43)

where @ =[0-w, 0,;0, 0—©;-®, @ 0]

The gain is selected as K=diag{13.13, 13.04,
15.08}N'-m'sec and ki=diag{1.0, 1.0, 1.0}N'm. In
simulation 1, a single axis maneuver is deliberately
initiated from an elliptic singularity, as shown in
Table 1, where the required torque is parallel to the
singular direction. In simulation 2, a rest-to-rest
maneuver is accomplished with the parameters, as
shown in Table 2. The performance of the proposed
steering laws is compared with that of the singularity
robust (SR) steering law (Oh and Vadali, 1991).

In the RDSVD steering law simulation, to prevent
the gimbal rate from changing abruptly and to escape
from the singular state in the very beginning, the
constant values A,,4, are set to 10° and 107,
respectively, and K ; is 107 in Egs. (27) and (28). In
the simulation 1, the perturbed gain matrix is used

Table 1. Simulation 1 parameters.

Item Value Units
1;1:;1 @ [0.0100]" rad/sec
B [0.7070.707 0 0" S
o [-90, 0, 90, 0]" deg
Target oy [0, 0, 0]T rad/sec
See s 00,00 —
Table 2. Simulation 2 parameters.
Ttem Value Units
w [000] T rad/sec
Initial State 5 [0.707 0.707 0 0] -
o [0,0,0,0]" deg
[on [0, 0, O]T rad/sec
Target State
B, [1,0,0,0]" —
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Fig. 5. Simulation 1 Results.
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Fig. 6. Torque Comparisons.

together with feedback control laws. The perturbed
gain matrix in order to prevent the required torque
from being parallel to the singular direction is given

by

Kl _5K3 &<2
K=| &, K,-dK, “4)
_ékz éK] K3

where the perturbed gain is assigned the value
oK =0.1 N-mrsec

The dynamic and kinematic equations for the
spacecraft with a SGCMG cluster can be written
using the angular velocity @ and the Euler
parameter [ as

w=—-I"(wIw+ D6 +w*DJ) (45)

Tosqie Comp sisons
)

S —

Timetach
(b) RDSVD
oo / _ —
§ - —1,
"'J_\; ""‘""
I\,f'f \\/’.
o Timesach ':[
(d) RDLS-2
=GB (46)

The following Figs. 5 and 6 reveal the results of
simulation 1.

In an initial singular state, both SR and RDSVD
steering laws show similar results. RDLS-1 and -2
steering laws are smoother on maneuvering compared
to SR and RDSVD. All of the suggested steering laws
work well in a somewhat artificial singular condition
which is experienced during initial stages of
maneuvering. In this simulation, the gain is perturbed
for all suggested steering laws and compared with
each other. However, RDSVD steering law can
escape singularity by itself. In other words, the
RDSVD steering law is not affected by an initial
singular condition and the same results can actually
be obtained by using perturbed gain matrix or not.
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Fig. 7. Simulation 2 Results.
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The results of Simulation 2 are shown in Figs. 7
and 8. These results illustrate that RDLS steering laws

de DOY

H———RDLSA

Tirne

(a) Simulation1

Tirne

(b) simulation 2

Fig. 9. Singularity Comparisons.

don’t meet singularity and act more softly than the SR
and RDSVD steering laws, as in simulation 1. The
perturbed gain matrix is not used to all suggested
steering laws. In Fig. 9, the det (DD) is shown as a
measure of singularity. These results show that all
suggested steering laws escaped from a singular state.

From the results of the simulations above, it is
possible to state that the steering laws suggested in
this paper work well compared with SR steering laws,
which are well known CMG steering laws. The
results of the RDSVD simulations show that the
gimbal rates abruptly increases to escape from
singularity, like SR steering laws. Although the output
torque deviates significantly from the required torque,
especially near singularity, the proposed steering law
works well as the singularity-free steering law in that
the gain is not perturbed. The gain in the cases of
RDLS-1 and -2 is perturbed in the initial singular
state condition, but these cases show smoother
behavior in singularity compared with other steering
laws like SR and RDSVD.

5. Conclusions

To overcome singularity problem, a new approach
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is presented for the design of SGCMG steering laws.
The reduced dimensional singular value decompo-
sition steering law in the present study is designed by
using singular value decomposition. By the process of
adopting the singular value decomposition, this new
steering law eliminates one of singular values which
goes to zero in a singular state. Also, by using the
least square method and adopting a Jacobian matrix
of reduced-dimensional forms, the reduced dimen-
sional least square steering laws are designed. These
steering laws have reduced dimensional forms that do
not have a singular state. Thus, singularity-free st-
eering laws are obtained. The difference between the
methods given in this paper and those suggested
previously has to do with the use of a component that
may or may not cause singularity. Further, all of the
suggested steering laws have been compensated four
times, differences between the output torque and the
required torque can be reduced in an iterative asym-
ptotic fashion. Additionally, in RDSVD, using the
newly defined switching parameter, the chattering
phenomenon of gimbal rates disappears. Results of
the simulations in this study show that the proposed
reduced-dimensional steering laws work well, even in
singularities. When the required torque is parallel to
the singular directions at the beginning of the RDLS-
1 and -2 steering laws simulations, it is possible to
escape from the singularity by using the perturbed
gain matrix. However, the RDLS-1 and -2 produce
output torques more smoothly in singular states.
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